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irregular, coarse or fine, with additional features such as brightness, 

colour, slope, uniformity, density, linearity, frequency, phase, directionality, 

randomness and granulation.6,8,13 The human eye can recognise these 

qualitative features in the texture of greyscale or colour images, but 

cannot quantify them.8,13 The texture features of a medical image may 

provide valuable information for diagnosis, since tissue properties 

tend to change according to the pathology, which in turn promotes a 

respective change in image texture.

In this study we aim to demonstrate proof of the concept that 

quantitative texture feature analysis software (MaZda) could be 

applied to MRI scans of various orbital pathologies to produce a 

unique footprint and extract information about tissue properties. 

MaZda is a publicly available, free computer software package, 

available to download from www.eletel.p.lodz.pl/programy/mazda/, 

that provides quantitative information about the internal structure 

of physical objects (such as human body tissue) by computing 

texture analysis parameters for MRI images.14,15 The MaZda package 

has computer programmes that allow interactive definition of 

regions of interest (ROIs) in images, computation of a variety of 

texture parameters for each ROI, selection of the most informative 

parameters, exploratory analysis of the texture data obtained and 

automatic classification of ROIs on the basis of their texture. MaZda 

software has been designed and implemented as a package of two 

Microsoft Windows® computer applications: MaZda.exe (for image 

processing, feature selection and extraction of textural features) and 

B11.exe (for data visualisation, classification and segmentation).14,15 

It does this by mathematically summarising the signal intensity of 

pixels within a chosen ROI. The steps involved in analysing a particular 

region of the image and classifying it are briefly discussed here, but 

are elaborated upon extensively in the downloadable documents 

available from the software website.16–18 The texture analysis data 

produced is in several-hundred-dimensional spaces and is not 

easy to handle by statistical analysis or by classifiers. Thus, MaZda 

employs techniques for reduction of feature vector dimensionality 

by selecting the most discriminative features for further analysis and 

displaying relations between features and texture class.

The software can take input rules for texture classification. Texture 

classification determines to which of a finite number of physically 

defined classes a homogeneous texture region belongs. The features 

generated are grouped as: histogram, gradient, co-occurrence matrix 

(COM), run-length matrix (RLM), autoregressive model and Haar wavelet 

groups, descriptions of which are given in Table 1. The most common 

statistical method for image feature computation is based on image  

first-order histogram (Figure 1). The histogram is computed from the 

intensity of pixels, without taking into consideration any spatial relations 

between the pixels within the image. Features are simply statistical 

parameters of the histogram distribution, such as mean brightness, 

variance, skewness, kurtosis and percentiles. The grey-level COM is a 

second-order histogram, computed from intensities of pairs of pixels, 

where the spatial relationship of the two pixels in a pair is defined.

Figure 1: A case of pleomorphic adenoma showing region of interest placed within the tumour and histogram 
output picture

Table 1: Discriminatory parameters analysed and their 
interpretation

Grey-level histogram Information about signal intensity values of the pixels

Co-occurrence matrix Information about the grey-level value distribution of 

pairs of pixels, separated by a defined distance in a 

given direction (i.e. the gradient values of the pixels)

Run-length matrix Information about runs of pixels with the same  

grey-level values in a given direction (i.e. homogeneity 

of signal intensity)

Absolute gradient Information about the spatial variation of grey-level 

values and frequency of similar signal intensities 

Autoregressive model Description of texture based on the statistical 

correlation between neighbouring pixels

Wavelet transform Information about the frequency content of an image 

within different scales of that image 

Roi = region of interest.
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Summarising, MaZda software allows computation of nine histogram-based 

textural features; 11 COM-based features derived from 20 COMs 

produced for four directions and five inter-pixel distances; five RLM-

based features at four different directions each; five gradient-map-based  

features; five based on an autoregressive model; and up to 20 based on 

the Haar wavelet transform (Table 1). Altogether, 279 descriptors that 

can characterise a greyscale image texture produce a substantial set 

of features potentially carrying sufficient information for image texture 

characterisation or region classification. Usually only a limited number 

of features carry relevant information needed for texture discrimination. 

MaZda allows selection of these features and rejection of the rest. 

Changes in these selected features in time can also quantitatively reflect 

changes in tissue’s physical structure, signifying progression,14,15 so these 

technologies could be used for monitoring and prognostication of orbital 

tumours. We hope that with further development, such image analysis can 

be used as an adjunct to the reference benchmark of histology of biopsy 

specimens. This is an innovative use of existing technology in the imaging 

and analysis of orbital disease which, to our knowledge, has not been 

previously reported. Essentially, this can be regarded as the histological 

analysis of a greyscale image. Application of this texture analysis 

technology has already been in practice in the food product industry and 

agriculture,19,20 and in the recent past there have been studies published 

using this technology in other medical specialities, which we present in 

the discussion section.

Methods
Ethics approval was not required for this study. All procedures were 

followed in accordance with the responsible committee on human 

experimentation and with the Helsinki Declaration of 1975 and 

subsequent revisions. Written informed consent was not obtained from 

the patient cases included in this article as no identifying information 

or images have been used.

Image acquisition
Only MRI head images with specific orbit sequences carried out 

for diagnostic purposes were included, and those done only for 

lesion localisation were excluded. MRI scans were retrospectively 

selected from 13 patients with a known histological diagnosis of 

orbital pathology. All scans were done from the same radiology unit 

and the scanning protocols followed for orbital lesions were: coronal 

and axial T1W turbo spin echo (TSE), coronal STIR, axial T2W TSE with  

fat suppression (FS), and coronal and axial T1W TSE FS with gadolinium 

enhancement. The scans were carried out on a variety of 1.5T scanners: 

InteraTM and Achieva (Philips Research Eindhoven, Amsterdam, the 

Netherlands), and SignaTM and OptimaTM (GE Healthcare, Chicago, IL, US). 

Two patients were scanned on a Signa 3T scanner, and their images were 

excluded from the study. For patients scanned at 1.5T with dedicated 

orbit sequences, coronal and axial images were acquired at 3.0 mm 

thickness with 3.3 mm spacing, coronal field of view 170–220 mm and 

axial field of view 180–240 mm. A field of view of 260 mm in axial and 

coronal planes was used for patients scanned at 3T.

Normalisation
The scans were anonymised and analysed in MaZda software  

(version 4.6) and its integrated B11 analysis programme (version 3.3). All 

four T1W sequences and T2W were selected for analysis. The raw images 

were saved as bitmap images and uploaded into the MaZda software 

(version 4.6). The image was first normalised to nullify the effects of 

brightness, contrast variation and other biases. Image intensities in the 

range of m +/− 3 s (µ = grey-level mean; m = grey-level standard deviation) 

were normalised for grey levels to reduce the dependence of higher 

order parameters on first-order grey-level distribution.14,15 This method 

remaps an image histogram in a range with the mean luminance in the 

middle and a span of three standard deviations onto the white-to-black 

greyscale range. Previous studies have shown that texture analysis can 

provide reproducible results under different MRI acquisition protocols if 

appropriate normalisation is used.21

Selecting region of interest
An ROI was selected manually at three levels for each image, one 

slice above and below the largest diameter of the pathology, because 

applying ROI to a single slice might not be representative of textural 

information for the entire lesion. Combining the textural information 

from different slices should yield a more complete description of the 

lesions’ textural features. The ROI is indicated with a superimposition 

of manually selected colour areas on the greyscale image (Figure 1). 

Up to 16 ROI profiles may be defined with the use of 16 unique colours. 

MaZda analysis is performed within the ROI. A multidisciplinary 

consensus was reached among all the authors (ophthalmologists 

and radiologists), in agreeing with the boundaries between normal 

and pathological tissues, and avoided including any adjacent  

healthy tissues.

Statistical analysis of data
The output data from MaZda was presented in 10-dimensional 

data space with nearly 300 parameters. A unique histogram was 

produced for each ROI and the mean of histogram data for all the 

pathologies was analysed on MedCalc software (version 18.10.2) using 

repeated measures analysis of variance (ANOVA). To analyse intra-

tumour variability at different ROIs of the same slice or image slices 

at various levels or image slices in different axes, signed rank sum 

statistical test was used. Mann-Whitney U test was used to compare 

the features between two pathologies. Sensitivity and specificity 

of MaZda differentiating normal and pathological tissue in the orbit 

was tested using area under the receiver operating characteristic 

curves (AUROC). Of all texture parameters produced, feature selection 

or extraction methods inbuilt into the software helped to choose 

the 10 most informative parameters. These parameters were derived 

based on Fisher coefficients (ratio of between-class to within-class 

variance), minimisation of both classification error probability and 

average correlation coefficients (POE + ACC) and mutual information 

coefficients, which measure the dependence between two or more 

random variable coefficients and a selection of optimal feature subsets 

with minimal classification error of 1-nearest neighbour (1-NN) classifier. 

The B11 statistical program of MaZda further processed this data to 

lower dimensional data space using linear transform methods and 

classifiesd the image texture pattern.14,15 The statistical linear transform 

method used for analysis was by linear discriminant analysis (LDA) to 

reduce the feature vector dimension and increase the discriminative 

power. The ROI was classified (texture classification) to a finite number 

of physically defined classes (e.g. normal or abnormal tissue) and a 3D 

surface geometry was reconstructed from texture information. Feature 

vectors can be applied to the input of a device called a classifier. On 

the basis of its input, the classifier took the decision as to which 

predefined texture classes its input represented. The B11 programme 

implemented two procedures for non-linear supervised classification: 

1-NN classifier and an artificial neural network. The 1-NN incorporated 

a simple learning algorithm in which generalisation was performed 

after collecting all the training data. During the training phase, feature 

vectors and class labels of the training samples were simply stored. In 

the classification phase, distances from a new sample to all the stored 

feature vectors were computed.
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Three-dimensional graphic representation
The three-dimensional distributions of data vectors are based 

on the co-occurrence texture features selected with the minimal 

classification error of the nearest neighbour classifier (1-NN).14,15 An 

example of three-dimensional graphic representation is discussed 

in results section. The step-by-step approach taken in analysing the 

images is given in Figure 2.6

Results
We excluded two cases who had scans on the 3T scanner and had orbital 

dermoid and myositis. Of all the scans assessed on the remaining 11 

patients with different orbital tumours, there was a statistically significant 

difference between mean histogram values of various orbital pathologies 

(p<0.001) as analysed by repeat measures ANOVA. Mean histogram values 

for all the orbital pathologies are graphically represented with confidence 

intervals given in Figure 3. The signed rank sum test did not show any  

intra-lesion ROI differences in features or differences in mean between 

ROIs in slices at different image levels of the same pathology or differences 

between coronal and axial slices from the same series of images (>0.05). 

Figure 4 shows two examples of histogram features, where in the first 

picture, two slices in different axes and at different patient visits were 

selected for cavernous haemangioma with no statistical difference in 

features. The other example in Figure 4 is that of lymphoma compared with 

lacrimal gland enlargement secondary to sarcoidosis, with statistically 

significant difference in histogram mean. There was also high sensitivity 

to detect pathological tissues, but as evident from the statistical results 

given in the AUROC in Figure 5, MaZda showed specificity of only 81.8%.  

Particularly, the specificity was poor in differentiating normal brain tissue 

and glioma; orbital fibrous tumour and muscle fibrotic changes in thyroid 

eye disease as represented by number of misclassifications between 

these tissues is given in Table 2. The interesting observation is that these 

orbital pathologies with fibrotic changes had overlapping pixel intensities 

and mean histogram values akin to normal brain tissue, as evident by 

the number of misclassified samples between normal brain tissue and a 

fibrous tumour, as given in Table 2.

The differential feature patterns recognised in the histogram were 

also reflected with other texture parameters analysed by the B11 

programme. Classification results of texture analysis between the 

tumour area and healthy reference area or between different tumours 

as assessed by LDA is given in Table 2. The rates of correctly classified 

data vectors were used as the primary outcome variable. This strategy of 

texture-based lesion classification has been used in previously published 

papers.3,22 A three-dimensional graphic representation of the dissimilarities 

between the ROI clusters is shown in Figure 6. In this example, texture 

features of an image of pleomorphic adenoma are compared with 

reference healthy tissue, in this instance brain tissue. Each cluster cloud is 

represented by one specific tissue type assessed. The distance between 

the cluster clouds indicate the dissimilarities in texture features on MRI 

images. As evident from Figure 6, the cluster clouds are widely dispersed 

in the three-dimensional space, indicating different texture features 

between pleomorphic adenoma and normal reference tissue.

Discussion
MaZda texture analysis is an experimental method, but better correlation 

of parameters with histopathological structures will provide a new tool 

for analysing abnormal orbital tissues. Changes of properly selected 

texture parameters in time can quantitatively reflect changes in tissue 

physical structure, e.g. to monitor progress in healing. The key features 

of this technology are: valuable information from texture features; 

proof of concept for non-invasive classification of various pathologies; 

MRI scanner

MaZda program

B11 program

Image 
acquisition

ROI selection

Image
normalisation

Feature
extraction

Feature
selection

Data
pre-processing

Texture
classi�cation

Figure 2: Steps involved in the analysis of magnetic 
resonance imaging

Table 2: Classification results of texture analysis between 
tumour area ROI and reference area ROI

ROI from orbital tumour ROI from reference tumour LDA 

misclassified 

samples

Metastases from breast 

cancer

Fibrous tumour 1/16

Cavernous haemangioma Lymphangioma 2/16

Lymphoma Plasmacytoma 0/16

Fibrous tumour Cerebral tissue 6/16

Pleomorphic adenoma Sarcoid lacrimal enlargement 0/16

Pleomorphic adenoma Thyroid lacrimal enlargement 1/16

Sarcoid lacrimal gland 

enlargement

Thyroid lacrimal enlargement 1/16

Lymphangioma Lymphoma 0/16

Thyroid inferior rectus Lymphoma 0/16

Glioma Plasmacytoma 1/16

Classification based on 1-NN for LDA 

LDA = linear discriminant analysis; 1-NN = nearest neighbour classifier;  
ROI = region of interest.

MRI = magnetic resonance imaging; ROI = region of interest.
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prognostication and monitoring by assessing tissue changes (Figure 

4); a useful adjunct tool to histopathology; expertise in image analysis 

can be enhanced once a standard protocol is established; and the fact 

that this technology is already in practical use in other non-medical 

fields such as agriculture and the food industry for quality assurance.19,20 

This idea of applying non-invasive methods to analyse tissue 

texture has also been put into practice in other medical disciplines.  

Holli et al.3 demonstrated that T1 weighted pre-contrast, post-contrast 

and subtracted images in breast cancer images could be analysed 

and classified with texture analysis. Assessed COM-based parameters 

showed good discriminatory power between different types of cancers.3 

Fruehwald-Pallamar et al. demonstrated that apparent diffusion 

coefficient and texture features varied significantly in parotid tumours.22 

Orphanidou-Vlachou et al. demonstrated the diagnostic uncertainty 

in conventional radiological reporting of posterior fossa tumours. In 

their series of 40 patients, even in those where the correct diagnosis 

was specified, 22% had alternatives proposed.5 The other quantitative 

analysis techniques for radiological images include magnetic resonance 

spectroscopy and diffusion imaging.5 Bahl et al.23 demonstrated 

good sensitivity and specificity when distinguishing between normal 

and cirrhotic liver using MaZda texture analysis of T2-weighted MRI 

images. They used the MaZda programme to perform dichotomous 

classification of liver fibrosis from double-contrast-enhanced MRI 

images. This allowed them to classify patients as having either none 

to moderate fibrosis or advanced fibrosis, with a cross-validated 

classification accuracy of 88.2%. However, this represents the use of 

imaging in the monitoring and prognosis of a pre-determined diagnosis 

rather than an initial identification. Watanabe et al. studied the effect of 

age on the texture of orbital tissues.24 They assessed 38 patients who 

underwent an orbit MRI scan. T1 and T2 images were obtained with 

ROI in six intra-orbital tissues (recti muscles, orbital fat, lacrimal gland 

and optic nerve) and compared them with corresponding extra-orbital 

tissue (masseter muscle, cheek fat pad, buccal fat, parotid gland and 

frontal grey matter). They demonstrated that T2 values for extraocular 

muscles showed a strong, positive correlation with age, while T1 

values demonstrate weakly positive associations with age. No gender 

Figure 3: Mean of histograms depicted as bar charts with confidence intervals and table showing the mean values
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Each ROI selected from a slice at one level above and below the slice with largest diameter of the tumour and in different planes of the images. 
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Diagnosis ROI slice 1 ROI slice 2 ROI slice 3 ROI slice 4 ROI slice 5

Metastasis 41.48 40.887 41.44 42.04 41.67

Cavernous haemangioma 51.67 51.427 50.533 51.822 51.829

Lymphoma 55.69 55.539 56.138 58.506 57.725

Fibrous tumour 70.72 71.233 69.439 70.848 70.975

Pleomorphic adenoma 54.22 55.963 55.935 55.887 56.097

Sarcoid 57.061 56.887 57.486 57.954 57.066

Thyroid lacrimal 58.083 59.223 58.87 57.995 58.475

Lymphangioma 55.065 54.875 54.573 53.034 53.026

Thyroid muscle 68.045 67.885 68.248 68.133 68.552

Glioma 60.232 60.667 60.229 60.743 60.337

Plasmacytoma 60.377 60.308 60.331 60.331 60.157
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difference was detected between T1 and T2 images. Intra-orbital 

structures demonstrated specific quantitative MRI measurements and 

aging patterns, which were different from extra-orbital structures.24 

Herlidou et al. demonstrated usefulness of quantitative texture analysis 

of MRI scans in monitoring osteoporosis.25 Other MRI quantification 

methods are also in use, which could also contribute to narrowing 

down the differential of orbital pathologies. The utility of quantitative 

MRI in the orbit has been investigated, particularly in Graves’s 

ophthalmopathy, showing positive correlations between increased T2 

or STIR signals and disease activity or therapy responses.26–29

Other quantitative MRI studies include the assessment of signal 

intensities on T2-weighted images or STIR in patients with optic neuritis30–32  

and apparent diffusion coefficient (ADC) measurement of the lacrimal 

gland in Sjögren’s syndrome.33 Sepahdari et al.34 and Fatima et al.35  

were able to characterise orbital tissues using diffusion-weighted MRI 

and ADC value, and the ability to differentiate between malignant and 

benign orbital tumours.

Figure 5: Sensitivity and specificity as shown by area under 
curve showing the ability of MaZda to differentiate between 
normal tissue and pathological tissue

Figure 6: Three-dimensional scatter plot graph
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Figure 4: Comparison of histogram features of a cavernous haemangioma at different slices and different visits, and 
lymphoma versus sarcoid related lacrimal gland enlargement

Cavernous haemangioma Lymphoma-lacrimal gland sarcoid

Discriminatory parameters

Histogram mean 52.834 53.600
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P-value >0.05

Discriminatory parameters
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Wavelet energy 15133 17077

P-value <0.05
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The limitations of this study are: MaZda is still an experimental 

research tool and expertise is required to analyse images using the 

software; orbital masses are rare and the numbers of each individual 

pathology we had were limited to derive any meaningful algorithm 

to test for sensitivity and specificity at detecting any specific pathology;36 

hence AUROC statistics were used to differentiate abnormal tissue from 

normal tissue. Various MRI texture features differ between the pathologies, 

but we did not have statistically significant enough numbers of individual 

pathologies, all scanned under standard protocols, to derive any algorithms 

to detect orbital pathology by texture analysis. Normalisation algorithms 

for the image processing have to be standardised before this ever has 

any clinical use; further larger studies are required to establish reference 

standards; since this is a retrospective study robust control over 

methodology was not possible, such as time duration between pre- and 

post-contrast images, repetition time and echo time of MRI sequences, 

which could have affected the texture pattern.

Other potential limitations with this technology could be difficulties in 

standardising procurement of images and optimal MRI data collection 

strategies. Different measuring techniques, such as spin echo, gradient 

echo and echo planar and different measuring parameters produce 

totally different patterns in texture.37 In addition, artificial texture is added 

by the scanner.37 A large number of different measuring techniques and 

imaging patterns add to the difficulties. There is the potential chance of 

misinterpretation of textures in tumours with varying characteristics like 

dermoid, which has a heterogeneous character, as also reported in the 

study by Holli et al.,3 where central necrosis in breast cancers leads to 

texture misclassifications.

Conclusion
This study showed the proof of concept that, should we develop a 

texture analysis library of pathologies correlating with histology, then 

non-invasive classification of orbital tissue pathology is possible by 

applying quantitative texture analysis to MRI scans. The advantage of 

texture analysis is that it directly assesses the architectural structure 

of orbital tissues. Further studies are needed to produce a larger 

reference frame of tissue histograms in histological confirmed diseases 

and to gain meaningful values for the sensitivity and specificity of these 

techniques in different orbital pathologies. In the future, more complex 

statistical techniques may be applied to develop classification models 

for orbital disease based on texture analysis parameters.

Such software could therefore provide a useful, non-invasive 

classification method for orbital tissues and disease processes 

when used as an adjunct to a radiological opinion whilst not 

discounting histology as the reference standard. Readily available 

access to picture archiving and communicating systems now allows 

ophthalmologists to review MRI images before a radiologist has 

generated a formal report. With increasing pressure being placed 

on radiologists in terms of the turnaround times for scan reports, 

this software tool may facilitate more rapid active intervention. It 

may also prove useful in cases of indeterminate histology or as an  

additional facet to narrow down a differential diagnosis in cases 

where achieving a tissue diagnosis is technically challenging and 

poses a high risk of iatrogenic morbidity. More detailed validation 

studies will be required before the software could be feasibly used in 

any sort of clinical practice. 
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